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Abstract—Computer graphics rendering software is ca-
pable of generating highly photorealistic images that can
be impossible to differentiate from photographic images.
As a result, the unique stature of photographs as a de�ni-
tive recording of events is being diminished (the easewith
which digital images can be manipulated is, of course,
also contributing to this demise).To this end, we describe
a method for differentiating between photorealistic and
photographic images.Speci�cally, we showthat a statistical
model based on �rst- and higher-order wavelet statistics
reveals subtle but signi�cant differencesbetweenphotore-
alistic and photographic images.

I . INTRODUCTION

Sophisticatedcomputergraphicsrenderingsoftware
can generateremarkablyphotorealisticimages.Though
it maytakesomeeffort, photorealisticimagescanbecre-
atedthatarenearlyimpossibleto differentiatefrom pho-
tographicimages.And as the renderingtechnologyim-
proves, photorealisticimageswill becomeincreasingly
easierto generateandmorerealistic.

This technologyis alreadyhaving direct implications
on our society. For example,in 1996 the United States
CongresspassedTheChild PornographyPreventionAct
which, in part, prohibitedany imagethat appearsto be
or conveys the impressionof someoneunder18 engaged
in sexually explicit conduct.This law madeillegal com-
putergeneratedpicturesthatonly appearto show minors
involved in sexual activity. In 2002,however, the United
StatesSupremeCourt struckdown this law in their 6-3
ruling in Ashcroft v. Free Speech Coalition - the court
said languagein the 1996 child pornographylaw was
unconstitutionallyvague and far-reaching.This ruling
makesit considerablymoredif�cult for law enforcement
agenciesto prosecutechild pornographycrimes,sinceit
is alwayspossibleto claim that any imageis computer
generated.

If we areto have any hopethatphotographswill again
hold the unique statureof being a de�niti ve recording
of events,we must develop technologythat can differ-
entiatebetweenphotographicandphotorealisticimages.

Therehasbeensomework in evaluatingthephotorealism
of computergraphicsrenderedimagesfrom a human
perceptionpoint of view (e.g., [10], [9], [11]). To our
knowledge,however, no computationaltechniquesexist
to differentiatebetweenphotographicand photorealis-
tic images(a methodfor differentiatingbetweenphoto-
graphicand(non-realistic)graphicaliconswasproposed
in [1]). Relatedwork, thoughprobablynot directly ap-
plicable,includetechniquesto differentiatebetweencity
and landscapeimages[16], [14], in-door and out-door
images[13], andphotographsandpaintings[4].

In this paperwe describea statisticalmodelfor photo-
graphicimagesthat is built upona wavelet-like decom-
position. The model consistsof �rst- and higher-order
statisticsthatcaptureregularitiesthatareinherentto pho-
tographicimages.We thenshow that this modelcan be
usedto differentiatebetweenphotographicandphotore-
alistic images- from a databaseof 40; 000photographic
and 6; 000 photorealisticimages,we correctly classify
approximately67% of the photorealisticimageswhile
only mis-classifying1% of thephotographicimages.We
have previously useda similar techniqueto detectmes-
sageshiddenwithin digital images(steganography)[7],
[8].

I I . STATISTICAL MODEL

The decompositionof imagesusing basis functions
that are localized in spatial position, orientation, and
scale (e.g., wavelet) have proven extremely useful in
image compression,image coding, noise removal, and
texturesynthesis.Onereasonis thatsuchdecompositions
exhibit statisticalregularitiesthat can be exploited. The
imagedecompositionemployedhere is basedon sepa-
rable quadraturemirror �lters (QMFs) [15], [18], [12].
As illustratedin Figure 1, this decompositionsplits the
frequency spaceinto multiple scales,andorientations(a
vertical, a horizontal, and a diagonal subband).For a
color (RGB) image,the decompositionis appliedinde-
pendentlyto eachcolor channel.The resultingvertical,
horizontal,anddiagonalsubbandsfor scalei aredenoted
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Fig. 1: Shown on the left is an idealizedmulti-scaleandorientationdecompositionof frequency space.Shown, from
top to bottom,arelevels0, 1, and2, andfrom left to right, arethelow-pass,vertical,horizontal,anddiagonalsubbands.
Shown on the right is the magnitudeof a multi-scaleandorientationdecompositionof a “disc” image.

asV c
i (x; y), H c

i (x; y), andD c
i (x; y) respectively, where

c 2 f r ; g; bg.
Wavelet subbandcoef�cients for natural imagestyp-

ically follow a distribution which is well modeledby
a generalizedLaplacianP(x) = 1

Z e�j x=sjp
; where s; p

arethe densityparameters,andZ is a normalizingcon-
stant[2]. This family of densitiesarecharacterizedby a
sharppeakat zero and large symmetrictails. An intu-
itive explanationfor this is that naturalimagestypically
containlargesmoothregionsandabrupttransitions(e.g.,
edges).The smoothregions, thoughdominant,produce
small coef�cients near zero, while the transitionsgen-
eratelarge coef�cients. In our statisticalmodel, instead
of directly estimatingthe generalizedLapalaciandistri-
bution, a simplerapproachis takento characterizethese
marginal distributions. More speci�cally, the �rst four
orderstatistics(mean,variance,skewness,andkurtosis)
of thesubbandcoef�cient histogramsateachorientation,
scale,and color channelare collected.Thesestatistics
form the �rst half of our statisticalmodel.

While thesestatisticsdescribethebasiccoef�cient dis-
tributions,they areunlikely to capturethe strongcorre-
lationsthatexist acrossspace,orientation,andscale[2],
[6]. For example,salient image featuressuch as edges
tend to orient spatially in certain direction and extend
acrossmultiple scales.Theseimage featuresresult in
substantiallocal energy acrossmany scales,orientations,
and spatial locations.The local energy can be roughly
measuredby the magnitudeof the decompositionco-

ef�cient. As such, a strong coef�cient in a horizontal
subbandmayindicatethat its left andright spatialneigh-
bors in the samesubbandwill also have a large value.
Similarly, if there is a coef�cient with large magnitude
at scalei , it is alsovery likely that its “parent” at scale
i + 1 will alsohave a large magnitude.

In order to capturesomeof thesehigher-orderstatis-
tical correlations,we collect a secondset of statistics
that arebasedon the errors in a linear predictorof co-
ef�cient magnitude[2]. For the purposeof illustration,
consider�rst a vertical band of the green channelat
scale i , V g

i (x; y). A linear predictor for the magnitude
of thesecoef�cients in a subset1 of all possiblespatial,
orientation,scale,andcolor neighborsis given by:

jV g
i (x; y)j = w1jV g

i (x � 1; y)j + w2jV g
i (x + 1; y)j

+ w3jV g
i (x; y � 1)j + w4jV g

i (x; y + 1)j

+ w5jV g
i+1 (x=2; y=2)j + w6jD g

i (x; y)j

+ w7jD g
i+1 (x=2; y=2)j + w8jV r

i (x; y)j

+ w9jV b
i (x; y)j; (1)

where j � j denotesabsolutevalueand wk are the scalar
weights.This linear relationshipcan be expressedmore
compactlyin matrix form as:

~v = Q ~w; (2)

1The particularchoiceof neighborswas motivated by the obser-
vationsof [2] andmodi�ed to includenon-casualneighbors.
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where~v containsthe coef�cient magnitudesof V g
i (x; y)

strungout into a columnvector (to reducesensitivity to
noise,only magnitudesgreaterthan 1 are considered),
the columnsof the matrix Q contain the neighboring
coef�cient magnitudesasspeci�ed in Equation(1), and
~w = (w1 ::: w9)T . The weights ~w are determinedby
minimizing the following quadraticerror function:

E ( ~w) = [~v � Q ~w]2: (3)

This error function is minimizedby differentiatingwith
respectto ~w:

dE( ~w)
d~w

= 2QT (~v � Q ~w); (4)

setting the result equal to zero, and solving for ~w to
yield:

~w = (QT Q) � 1QT ~v: (5)

Given the large numberof constraints(oneper pixel) in
only nine unknowns, it is generallysafeto assumethat
the 9 � 9 matrix QT Q will be invertible.

Given the linear predictor, the log error betweenthe
actual coef�cient and the predictedcoef�cient magni-
tudesis:

~p = log(~v) � log(jQ ~wj); (6)

wherethe log(�) is computedpoint-wiseon eachvector
component.As with the coef�cient statisics,mean,vari-
ance,skewness,and kurtosis of this error distribution
are collected.This processis repeatedfor scalesi =
1; :::; n � 1, andfor the subbandsV r

i andV b
i , wherethe

linear predictorsfor thesesubbandsareof the form:

jV r
i (x; y)j = w1jV r

i (x � 1; y)j + w2jV r
i (x + 1; y)j

+ w3jV r
i (x; y � 1)j + w4jV r

i (x; y + 1)j

+ w5jV r
i +1 (x=2; y=2)j + w6jD r

i (x; y)j

+ w7jD r
i +1 (x=2; y=2)j + w8jV g

i (x; y)j

+ w9jV b
i (x; y)j; (7)

and

jV b
i (x; y)j = w1jV b

i (x � 1; y)j + w2jV b
i (x + 1; y)j

+ w3jV b
i (x; y � 1)j + w4jV b

i (x; y + 1)j

+ w5jV b
i+1 (x=2; y=2)j + w6jD b

i (x; y)j

+ w7jD b
i+1 (x=2; y=2)j + w8jV r

i (x; y)j

+ w9jV g
i (x; y)j: (8)

A similar processis repeatedfor the horizontaland di-
agonalsubbands.As an example, the predictor for the

greenchanneltakesthe form:

jH g
i (x; y)j = w1jH g

i (x � 1; y)j + w2jH g
i (x + 1; y)j

+ w3jH g
i (x; y � 1)j + w4jH g

i (x; y + 1)j

+ w5jH g
i +1 (x=2; y=2)j + w6jD g

i (x; y)j

+ w7jD g
i +1 (x=2; y=2)j + w8jH r

i (x; y)j

+ w9jH b
i (x; y)j; (9)

and

jD g
i (x; y)j = w1jD g

i (x � 1; y)j + w2jD g
i (x + 1; y)j

+ w3jD g
i (x; y � 1)j + w4jD g

i (x; y + 1)j

+ w5jD g
i+1 (x=2; y=2)j + w6jH g

i (x; y)j

+ w7jV g
i (x; y)j + w8jD r

i (x; y)j

+ w9jD b
i (x; y)j: (10)

For the horizontalanddiagonalsubbands,the predictor
for theredandbluechannelsaredeterminedin a similar
wayaswasdonefor theverticalsubbands,Equations(7)-
(8). For eachoriented,scaleandcolor subband,a similar
error metric, Equation(6), and error statisticsare com-
puted.

For amulti-scaledecompositionwith scalesi = 1; :::; n,
thetotalnumberof basiccoef�cient statisticsis 36(n� 1)
(12(n � 1) per color channel),and the total numberof
error statisticsis also 36(n � 1), yielding a grandtotal
of 72(n � 1) statistics.Thesestatisticsform the feature
vector to be usedto discriminatebetweenphotorealistic
andphotographicimages.

I I I . CLASSIFICATION

Fromthemeasuredstatisticsof a trainingsetof images
labeledas photorealisticor photographic,our goal is to
build a classi�er that candetermineto which category a
novel test imagebelongs.

To this end,linear discriminationanalysis(LDA) is a
widely usedclassi�cation algorithm [5]. In a two-class
LDA a one-dimensionallinear subspaceis found such
that when the featuresareprojectedonto this subspace,
the within-classscatteris minimizedwhile the between-
classscatteris maximized.LDA is attractive becauseof
its generaleffectivenessand simplicity (the classi�er is
built using a closed-formgeneralizedeigenvector solu-
tion). The drawback of LDA is that the classi�cation
surfaceis constrainedto be linear.

Supportvectormachines(SVM) afford amore�e xible
non-linearclassi�cationsurface[17]. Within this family
of classi�ers thereareboth linearandnon-linearSVMs.
A linearSVM is similar to anLDA, thedifferencebeing
in the objective function that is minimized.A non-linear
SVM extendsa linearSVM by usinga kernelfunctionto
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mapthe training exemplarsinto a higher (possiblyin�-
nite) dimensionalspace.While affording a more�e xible
classi�er, the constructionof a non-linearSVM is no
longer closed-form,but requiresan iterative numerical
optimization.

We employedboth LDA and a non-linearSVM for
thepurposesof distinguishingbetweenphotorealisticand
photographicimages.

IV. RESULTS

Shown in Figures2 and 3 are several imagestaken
from a databaseof 40; 000photographicand6,000pho-
torealisticimages2. All of the imagesconsistof a broad
rangeof indoor and outdoorscenes,and the photoreal-
istic imageswere renderedusing a numberof different
softwarepackages(e.g., 3D Studio Max, Maya, Soft-
Image3D, PovRay, Lightwave 3D andImagine).All of
the imagesarecolor (RGB), JPEGcompressed(with an
averagequality of 90%), and typically on the order of
600� 400 pixels in size.

From this databaseof 46; 000 images,statistics as
describedin Section II were extracted. To accommo-
date different image sizes,only the central 256� 256
region of eachimage was considered.For eachimage
region,a four-level three-orientationQMF pyramid3 was
constructedfor eachcolor channel,from which a 216-
dimensionalfeaturevector(72 per color channel)of co-
ef�cient anderror statisticswascollected.

Fromthe46; 000featurevectors,32; 000photographic
and 4; 800 photorealisticfeature vectors were used to
train bothanLDA anda non-linearSVM 4. Theremain-
ing featurevectorswere usedto test the classi�ers. In

2The photographic images were downloaded from
www.freef ot o.c om, the photorealisticimagesweredownloaded
from www.raph.c om andwww.irtc. org .

3We employeda 9-tap QMF �lter as the basisof the multi-scale
multi-orientationimage decomposition.The low-pass,l , and high-
pass,h, �lters aregiven by:

l = [0:02807382 � 0:060944743 � 0:073386624

0:41472545 0:7973934 0:41472545

� 0:073386624 � 0:060944743 0:02807382]

h = [0:02807382 0:060944743 � 0:073386624

� 0:41472545 0:7973934 � 0:41472545

� 0:073386624 0:060944743 0:02807382]:

We also have experimentedwith both Laplacianand steerablepyra-
mid decompositions.Resultsfrom a steerablepyramid (with eight
orientation subbands)were similar to the results using a QMF
pyramid(which useonly threeorientationsubbands).The Laplacian
pyramidgenerallygave poor results.So while it seemsthat oriented
subbandsarenecessary, it also seemsthat a �ner orientationtuning
is not necessaryfor this particulartask.

4We employedthe SVM algorithm implementedin LIBSVM [3],
alongwith an RBF kernel.

training testing
LDA SVM LDA SVM

photographic 58.7 70.9 54.6 66.8
photorealistic 99.4 99.1 99.2 98.8

TABLE I: Classi�cationresultsusingLDA andSVM.
Shown are the averageaccuracies(in percent)over
100 randomtraining/testingsplits of the databaseof
40; 000photographicand6; 000photorealisticimages.

the resultspresentedhere,the training/testingsplit was
donerandomly. We report, in Table I, the classi�cation
accuracy over 100suchsplits.With a0:8% false-negative
rate (a photorealisticimageclassi�ed as photographic),
the LDA correctly classi�ed approximately54:6% of
the photorealisticimages.A non-linearSVM hadbetter
performance,correctlyclassifyingapproximately66:8%
of the photographicimages,with a 1:2% false-negative
rate. Note that in both casesthe testing accuracy was
fairly closeto the training accuracy, suggestingthat the
classi�ers generalized.

We next wonderedwhich imagesweremosteasyand
most dif�cult to classify. Speci�cally, imagesthat are
easyto classifyarethosethatarefar from theseparating
classi�cation surface,andthosethat arehard to classify
arenear, or on the wrong sideof, the classi�cation sur-
face.Shown in Figures4 and 5 are eight photographic
imagesandeightphotorealisticimages,respectively, that
were easily classi�ed under the non-linear SVM. We
found that photographicimagesof trees,plants,etc. are
particularlyeasyto classify, but notethatcity scenesare
alsocorrectlyclassi�ed. We alsonoticedthat photoreal-
istic imagesthatareeasyto classifyappearto beparticu-
larly arti�cial (e.g.,lack of depth-of-�eld, lack of details,
plastic appearance,etc.). Shown in Figure 6 are eight
photographicimagesthat were incorrectly classi�ed as
photorealistic,and shown in Figure 7, are eight pho-
torealisticimagesincorrectlyclassi�ed asphotographic.
Notethatseveralof theincorrectlyclassi�edphotographic
imagesconsistof road-signs,andone is of a painting.

We further testedthe RBF SVM classi�er on a novel
setof fourteenimages(7 photographic,7 photorealistic)
from the websitewww.fakeor fot o. com. Shown in
Figure9 arethefourteenimageswith thecorrectlyclassi-
�ed photographicimagesin thetoprow, andthecorrectly
classi�edphotorealisticimagesin themiddlerow. Shown
in the bottom row are two incorrectly classi�ed photo-
graphicimages(left) andtwo incorrectlyclassi�ed pho-
torealistic images(right). Consistentwith the previous
results,we correctlyclassi�ed 71% of the photorealistic
images.

We wonderedwhich set of statistics,coef�cient or
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error, weremostcrucial for the classi�er. Shown in Fig-
ure 8 is the accuracy of the classi�er plottedagainstthe
numberandcategory of featurefor the LDA classi�er 5.
We beganby choosingthe singlefeature,out of the 216
possiblecoef�cient anderror features,thatgivesthebest
classi�cation accuracy. This was done by building 216
classi�ers eachbasedon a single feature,and choosing
the featurethat yields the highestaccuracy (the feature
wasthevariancein theerrorof thegreenchannel's diag-
onal bandat the secondscale).We thenchoosethe next
best featurefrom the remaining215 components.This
processwas repeateduntil all featureswere selected.
The solid line in Figure 8 is the accuracy asa function
of the numberof features.The white and gray regions
correspondto errorandcoef�cient features,respectively.
That is, if the featureincludedon the i th iteration is a
coef�cient thenwe denotethat with a vertical gray line
at the i th position on the horizontalaxis. Note that the
coef�cient and error statisticsare interleaved, showing
thatbothsetsof statisticsareimportantfor classi�cation.

And �nally , we attemptedto retrain the non-linear
SVM with randomclasslabelsassignedto the training
images.The rationale for this was to ensurethat the
statisticalmodelandclassi�er arediscriminatingon fun-
damentaldifferencesbetweenphotographicandphotore-
alistic images,andnot on someartifact.To this end,we
expecta randomclassassignmentto leadto signi�cantly
worseclassi�cationaccuracy. We generatedtendifferent
training setscontaining5; 000 randomly selectedpho-
tographicimagesand5; 000photorealisticimages.One-
half of theseimageswererandomlyassignedto thepho-
tographicclassand the other half were assignedto the
photorealisticclass. We then trained non-linear SVM
classi�ers on thesetraining setsand testedthem on the
testingsetsas usedin our experimentdescribedabove.
The best performanceacrossthe ten training setswas
27:6% correctly classi�ed photographicimages,with a
1:4% false-negative rate. Note that this is signi�cantly
worsethanthe 66:8% detectionaccuracy when the cor-
rect training labelswere used.This result indicatesthat
our statisticalmodelandclassi�er arediscriminatingon
fundamentalstatisticaldifferencesbetweenphotographic
andphotorealisticimages.

V. DISCUSSION

We have describeda statisticalmodelfor photographic
imagesconsistingof �rst- andhigher-orderwaveletstatis-

5This analysis was performed only on the LDA becausethe
computationalcostof retraining23; 220 = 216+ � � � + 1 non-linear
SVMs is prohibitive. We expect the samepatternof resultsfor the
non-linearSVM.

tics.This modelseemsto captureregularitiesthatarein-
herentto photographicimages.We have alsoshown that
this model,coupledwith eitheran LDA or a non-linear
SVM, canbeusedto differentiatebetweenphotorealistic
and photographicimages.It is interestingto see that
even though photorealisticimagescan be perceptually
indistinguishablefrom photographicimages,their under-
lying statisticscan still be signi�cantly different.These
techniquesarealsolikely to have importantapplications
in the growing �eld of digital forensics.

There are, of course,several possibleextensionsto
this work. We expect that thesetechniquescan be ex-
tendedto differentiatebetweensyntheticallygenerated
andnaturalvoice signalsandvideo streams.And, as in
earlier work [8] we expect a one-classSVM, that only
requirestraining from photographicimages,to simplify
the classi�er training.

Finally we note that it is not immediately obvious
thata photorealisticimagecouldbealteredto matchthe
expectedhigher-orderstatisticsof photographicimages.
The drawback of this, from a renderingpoint of view,
is that thesemodelsdon't necessarilygive any insight
into how one might rendermore photorealisticimages.
The bene�t, from a digital forensic point of view, is
that it is likely that this model will not be immediately
vulnerableto counter-attacks.It is possible,of course,
thatcounter-measureswill bedevelopedthatcanfoil the
classi�cationschemeoutlinedhere.Thedevelopmentof
suchtechniqueswill in turn lead to betterclassi�cation
schemes,andso on.
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Fig. 2: Eight examplesfrom a databaseof 40; 000 photographicimages.The central256� 256 white boxes denote
the region of the imagefrom which statisticsaremeasured.

Fig. 3: Eight examplesfrom a databaseof 6; 000photorealisticimages.The central256� 256 white boxesdenotethe
region of the imagefrom which statisticsaremeasured.

Fig. 4: Easily classi�ed photographicimages.



8

Fig. 5: Easily classi�ed photorealisticimages.

Fig. 6: Incorrectlyclassi�ed photographicimages.

Fig. 7: Incorrectlyclassi�ed photorealisticimages.
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Fig. 8: Shown is the classi�cationaccuracy asa functionof thenumberandcategory of featurefor the LDA classi�er.
The white andgray regionscorrespondto error andcoef�cient features,respectively.

(a)

(b)

(c) (d)

Fig. 9: Images from www.fakeorfoto.com . Shown in (a) and (c) are correctly and incorrectly classi�ed
photographicimages,respectively. Shown in (b) and (d) arecorrectlyandincorrectlyclassi�ed photorealisticimages,
respectively.


