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Abstract— Computer graphics rendering software is ca-
pable of generating highly photorealistic imagesthat can
be impossible to differentiate from photographic images.
As a result, the unique stature of photographs as a de ni-
tive recording of eventsis being diminished (the easewith
which digital images can be manipulated is, of course,
also contributing to this demise).To this end, we describe
a method for differentiating between photorealistic and
photographic images.Speci cally, we showthat a statistical
model basedon rst- and higher-order wavelet statistics
reveals subtle but signi cant differencesbetweenphotore-
alistic and photographic images.

I. INTRODUCTION

Sophisticatedcomputer graphicsrendering software
can generateremarkablyphotorealisticimages.Though
it maytakesomeeffort, photorealistidmagescanbecre-
atedthatarenearlyimpossibleto differentiatefrom pho-
tographicimages.And as the renderingtechnologyim-
proves, photorealisticimageswill becomeincreasingly
easierto generateand morerealistic.

This technologyis alreadyhaving direct implications
on our society For example,in 1996 the United States
Congresgassedrhe Child PornographyPrevention Act
which, in part, prohibitedarny imagethat appearsto be
or cornveys the impressionof someonainder18 engaged
in sexually explicit conduct.This law madeillegal com-
putergenerategicturesthatonly appeartto shov minors
involvedin sexual activity. In 2002, however, the United
StatesSupremeCourt struck down this law in their 6-3
ruling in Ashcoft v. Free Speeh Coalition - the court
said languagein the 1996 child pornographylaw was
unconstitutionallyvague and far-reaching. This ruling
makesit considerablymoredif cult for law enforcement
agenciedo prosecutechild pornographycrimes,sinceit
is alwayspossibleto claim that ary imageis computer
generated.

If we areto have ary hopethatphotographsvill again
hold the unique statureof being a de niti ve recording
of events,we must develop technologythat can differ-
entiatebetweenphotographicand photorealistiamages.

Therehasbeensomework in evaluatingthe photorealism
of computergraphicsrenderedimagesfrom a human
perceptionpoint of view (e.g., [10], [9], [11]). To our

knowledge,however, no computationatechniquesexist

to differentiate betweenphotographicand photorealis-
tic images(a methodfor differentiatingbetweenphoto-
graphicand (non-realistic)graphicaliconswasproposed
in [1]). Relatedwork, thoughprobably not directly ap-

plicable,includetechniquedo differentiatebetweercity

and landscapdmages[16], [14], in-door and out-door
images[13], and photographsnd paintings[4].

In this paperwe describea statisticalmodelfor photo-
graphicimagesthatis built upona wavelet-like decom-
position. The model consistsof rst- and higherorder
statisticghatcaptureregularitiesthatareinherentto pho-
tographicimages.We then shaw that this model can be
usedto differentiatebetweenphotographicand photore-
alisticimages- from a databasef 40; 000 photographic
and 6; 000 photorealisticimages,we correctly classify
approximately67% of the photorealisticimageswhile
only mis-classifyingl% of the photographidmagesWe
have previously useda similar techniqueto detectmes-
sageshiddenwithin digital images(steganography])7],
[8].

Il. STATISTICAL MODEL

The decompositionof imagesusing basis functions
that are localized in spatial position, orientation, and
scale (e.g., wavelet) have proven extremely useful in
image compressionjmage coding, noise removal, and
texture synthesisOnereasoris thatsuchdecompositions
exhibit statisticalregularitiesthat can be exploited. The
image decompositionemployedhereis basedon sepa-
rable quadraturemirror lters (QMFs) [15], [18], [12].
As illustratedin Figure 1, this decompositiorsplits the
frequeng spaceinto multiple scalesandorientations(a
vertical, a horizontal, and a diagonal subband).For a
color (RGB) image, the decompositionis appliedinde-
pendentlyto eachcolor channel.The resulting vertical,
horizontal, anddiagonalsubbandgor scalei aredenoted
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Fig. 1: Showvn on the left is anidealizedmulti-scaleand orientationdecompositiorof frequeng space.Shavn, from
top to bottom,arelevels0, 1, and2, andfrom left to right, arethe low-passyertical, horizontal,anddiagonalsubbands.
Shown on the right is the magnitudeof a multi-scaleand orientationdecompositiorof a “disc” image.

asVi®(x; y), HE(x; y), and D{(x; y) respectrely, where
c2fr;g;bg.

Wavelet subbandcoefcients for naturalimagestyp-
ically follow a distribution which is well modeledby
a generalizedLaplacianP (x) = el **”; wheres;p
arethe densityparametersandZ is a normalizingcon-
stant[2]. This family of densitiesare characterizedy a
sharppeakat zero and large symmetrictails. An intu-
itive explanationfor this is that naturalimagestypically
containlarge smoothregionsandabrupttransitions(e.qg.,
edges).The smoothregions, thoughdominant,produce
small coefcients near zero, while the transitionsgen-
eratelarge coefcients. In our statisticalmodel, instead
of directly estimatingthe generalized_apalaciandistri-
bution, a simplerapproachs takento characterizéhese
mauginal distributions. More speci cally, the rst four
order statistics(mean,variance,skavness,and kurtosis)
of thesubbandcoefcient histogramsateachorientation,
scale,and color channelare collected. Thesestatistics
form the rst half of our statisticalmodel.

While thesestatisticsdescribehebasiccoefcient dis-
tributions, they are unlikely to capturethe strongcorre-
lationsthatexist acrossspace prientation,andscale[2],
[6]. For example, salientimage featuressuch as edges
tend to orient spatially in certain direction and extend
acrossmultiple scales.Theseimage featuresresult in
substantialocal enegy acrossmary scalesprientations,
and spatiallocations. The local enegy can be roughly
measuredby the magnitudeof the decompositionco-

efcient. As such, a strong coefcient in a horizontal
subbandmayindicatethatits left andright spatialneigh-
borsin the samesubbandwill also have a large value.
Similarly, if thereis a coefcient with large magnitude
at scalei, it is alsovery likely thatits “parent” at scale
i + 1 will alsohave a large magnitude.

In orderto capturesomeof thesehigherorder statis-
tical correlations,we collect a secondset of statistics
that are basedon the errorsin a linear predictorof co-
efcient magnitude[2]. For the purposeof illustration,
consider rst a vertical band of the greenchannelat
scalei, V9(x;y). A linear predictorfor the magnitude
of thesecoefcients in a subset! of all possiblespatial,
orientation,scale,and color neighborsis given by:

VIl = waiVP(x o Liy)i+ waVid(x + 1)
waVio(x;y  1)j + wajVid(x; y + 1)
wsjVid; (x=2; y=2)j + weiDP(x; )]
w7iD Py (x=2;y=2)j + WiV’ (X; )]

woj ViP(X; y)j;

+ 4+ o+ o+

(1)

wherej j denotesabsolutevalueandwy arethe scalar
weights.This linear relationshipcan be expressednore

compactlyin matrix form as:
N =

Qw, (2)

The particular choice of neighborswas motivated by the obser
vationsof [2] and modi ed to include non-casuaheighbors.



wherew containsthe coefcient magnitudesof Vig(x; y)

strungout into a columnvector (to reducesensitvity to

noise, only magnitudesgreaterthan 1 are considered),
the columnsof the matrix Q contain the neighboring
coefcient magnitudesasspeci ed in Equation(1), and

w= (w1 I Wo)'.The weightsw are determinedby

minimizing the following quadraticerror function:

E(w) = Qw]*: 3

This error function is minimized by differentiatingwith
respectto w:

dE(w) _ T :

G = QT+ Qw); (4)

setting the result equal to zero, and solving for w to
yield:

[v

(Q'Q) 'Q'w: ®)
Giventhelarge numberof constraintgone per pixel) in
only nine unknowns, it is generallysafeto assumethat
the9 9 matrix QTQ will beinvertible.

Given the linear predictor the log error betweenthe
actual coefcient and the predictedcoefcient magni-
tudesis:

W =

p = log(v) log(jQwj); (6)

wherethe log( ) is computedpoint-wiseon eachvector
componentAs with the coefcient statisicsmean,vari-
ance, skewvness,and kurtosis of this error distribution
are collected. This processis repeatedfor scalesi =

1;::;n 1, andfor the subbands/' and\/ib, wherethe
linear predictorsfor thesesubbandsare of the form:

iVi" (% y)j

1y)j+ waVi' (x + 1;y)j
waVi (xy  1)j+ wajVi (x; y + 1)]

wajVi' (x

WsjVi'yq (x=2; y=2)j + wejD{ (X; y)j
w7jD 1 (x=2; y=2)j + wgjV,2(X; y)]
Wi Vi°(x; Y)j;

+ + + o+

(7)

and

JViP(x; y)j

1y)j + Wi ViP(x + 1;y)j
waiViP(y 1)) + wajVP(x; y + 1)j
wsj V2, (x=2; y=2)j + weiDP(x; y)j

leVib(X

w7jD Py (x=2; y=2)j + WgjV{" (X; Y)j

+ + 4+ o+

woj Vi3 (x; y)j: (8)

A similar processs repeatedor the horizontaland di-
agonalsubbandsAs an example, the predictor for the

greenchanneltakesthe form:
JHEOG Y = wijHI(x  Ly)j+ waojHE(x + 1;y)j
waHO(y  1)j + waH2(x; y + 1)]
wsjH %, (x=2,y=2)j + wejD P (x; y)j
W7D P (x=2;y=2)j + wejH [ (x; y)]

WoiH 2(X; y)i;

+ 4+ + o+

(9)

and

iDP(x; )i

wijD2(x  Ly)j+ woiDI(x + 1;y)j
wsiDP(Gy  1)j+ waDP(xy + 1)
wsjD Y (x=2; y=2)j + wejH 2(X; y)]
w7 Vi3 (x; y)j + weiD (X; y)]
WeD7(x; y)j:

+ + o+ 4+

(10)

For the horizontaland diagonalsubbandsthe predictor
for theredandblue channelsaredeterminedn a similar
way aswasdonefor theverticalsubbandsEquationg7)-
(8). For eachoriented,scaleandcolor subbanda similar
error metric, Equation(6), and error statisticsare com-
puted.

For amulti-scaledecompositiomwith scales = 1;:::;n,
thetotal numberof basiccoefcient statisticss 36(n 1)
(12(n 1) per color channel),and the total numberof
error statisticsis also36(n 1), yielding a grandtotal
of 72(n 1) statistics.Thesestatisticsform the feature
vectorto be usedto discriminatebetweenphotorealistic
and photographidmages.

I1l. CLASSIFICATION

Fromthemeasuredtatisticsof atrainingsetof images
labeledas photorealisticor photographicour goal is to
build a classi er that candetermineto which cateyory a
novel testimagebelongs.

To this end, linear discriminationanalysis(LDA) is a
widely usedclassi cation algorithm [5]. In a two-class
LDA a one-dimensionalinear subspacds found such
that whenthe featuresare projectedonto this subspace,
the within-classscatteris minimized while the between-
classscatteris maximized.LDA is attractve becauseof
its generaleffectivenessand simplicity (the classi er is
built using a closed-formgeneralizedeigervector solu-
tion). The dravback of LDA is that the classi cation
surfaceis constrainedo be linear

SupportvectormachineSVM) afford amore e xible
non-linearclassi cation surface[17]. Within this family
of classi ersthereareboth linearandnon-linearSVMs.
A linear SVM is similar to anLDA, the differencebeing
in the objective functionthatis minimized.A non-linear
SVM extendsa linear SVM by usinga kernelfunctionto



map the training exemplarsinto a higher (possiblyin -
nite) dimensionakpace While affording a more e xible
classi er, the constructionof a non-linear SVM is no
longer closed-form,but requiresan iterative numerical
optimization.

We employedboth LDA and a non-linear SVM for
the purpose®f distinguishingoetweerphotorealistiand
photographidmages.

IV. RESULTS

Shawn in Figures2 and 3 are several imagestaken
from a databas®f 40; 000 photographiand6,000pho-
torealisticimages$. All of the imagesconsistof a broad
rangeof indoor and outdoor scenesand the photoreal-
istic imageswere renderedusing a numberof different
software packagege.g., 3D Studio Max, Maya, Soft-
Image3D, PovRay Lightwave 3D andImagine).All of
the imagesare color (RGB), JPEGcompressedwith an
averagequality of 90%), and typically on the order of
600 400 pixelsin size.

From this databaseof 46;000 images, statistics as
describedin Sectionll were extracted. To accommo-
date different image sizes,only the central 256 256
region of eachimage was consideredFor eachimage
region, afour-level three-orientatioQMF pyramid® was
constructedor eachcolor channel,from which a 216-
dimensionalfeaturevector (72 per color channel)of co-
efcient and error statisticswas collected.

Fromthe46; 000featurevectors,32; 000photographic
and 4; 800 photorealisticfeature vectors were usedto
train bothan LDA anda non-linearSVM #. The remain-
ing featurevectorswere usedto testthe classi ers. In

2The photographic images were downloaded from
www.freef ot o0.c om the photorealisticimageswere downloaded
from www.raph.c om andwww.irtc.  org .

3We employeda 9-tap QMF lter as the basisof the multi-scale
multi-orientationimage decomposition.The low-pass,|, and high-
pass,h, lters aregiven by:

| [0:02807382  0:060944743  0:073386624

0:41472545 0:7973934 0:41472545

0:073386624  0:060944743 0:02807382]
[0:02807382 0:060944743  0:073386624

0:41472545 0:7973934  0:41472545

0:073386624 0:060944743 0:02807382]

=5
1

We also have experimentedwith both Laplacianand steerablepyra-
mid decompositionsResultsfrom a steerablepyramid (with eight
orientation subbands)were similar to the results using a QMF
pyramid (which useonly threeorientationsubbands)The Laplacian
pyramid generallygave poor results.So while it seemghat oriented
subbandsare necessaryit alsoseemshata ner orientationtuning
is not necessaryor this particulartask.

*We employedthe SVM algorithmimplementedn LIBSVM [3],
alongwith an RBF kernel.

training testing
LDA SVM LDA SVM
photographic 58.7 70.9 54.6 66.8
photorealistic 99.4 99.1 99.2 98.8

TABLE I: Classi cationresultsusingLDA andSVM.
Shown are the average accuracieqin percent)over
100 randomtraining/testingsplits of the databaseof
40; 000 photographi@and6; 000 photorealistidmages.

the resultspresentecdhere, the training/testingsplit was
donerandomly We report,in Table |, the classi cation
accurag over 100suchsplits. With a 0:8% false-ngative

rate (a photorealisticimage classi ed as photographic),
the LDA correctly classi ed approximately54:6% of

the photorealistidimages.A non-linearSVM had better
performancegorrectly classifyingapproximately66:8%

of the photographidmages,with a 1:2% false-ngative

rate. Note that in both casesthe testing accurag was
fairly closeto the training accurag, suggestinghat the

classi ers generalized.

We next wonderedwhich imageswere mosteasyand
most dif cult to classify Speci cally, imagesthat are
easyto classifyarethosethatarefar from the separating
classi cation surface,andthosethat are hardto classify
arenear or on the wrong side of, the classi cation sur
face. Shavn in Figures4 and5 are eight photographic
imagesandeight photorealistidmages respectiely, that
were easily classi ed under the non-linear SVM. We
found that photographidmagesof trees,plants,etc. are
particularlyeasyto classify but notethatcity scenesre
alsocorrectly classi ed. We alsonoticedthat photoreal-
isticimagegthatareeasyto classifyappeato be particu-
larly arti cial (e.g.,lack of depth-of- eld, lack of details,
plastic appearanceetc.). Shavn in Figure 6 are eight
photographicimagesthat were incorrectly classi ed as
photorealistic,and shovn in Figure 7, are eight pho-
torealisticimagesincorrectly classi ed as photographic.
Notethatseveralof theincorrectlyclassi ed photographic
imagesconsistof road-signsand oneis of a painting.

We further testedthe RBF SVM classi er on a novel
setof fourteenimages(7 photographicy/ photorealistic)
from the websitewww.fakeor fot o. com. Shawvn in
Figure9 arethefourteenimageswith the correctlyclassi-
ed photographiémagedn thetoprow, andthecorrectly
classi edphotorealistidmagesn themiddlerow. Shavn
in the bottomrow are two incorrectly classi ed photo-
graphicimages(left) andtwo incorrectly classi ed pho-
torealisticimages(right). Consistentwith the previous
results,we correctly classi ed 71% of the photorealistic
images.

We wonderedwhich set of statistics, coefcient or



error, weremostcrucial for the classi er. Shovn in Fig-
ure 8 is the accurag of the classi er plotted againstthe
numberand category of featurefor the LDA classi er °.
We beganby choosingthe single feature,out of the 216
possiblecoefcient anderrorfeaturesthat givesthe best
classi cation accurag. This was done by building 216
classi ers eachbasedon a single feature,and choosing
the featurethat yields the highestaccurag (the feature
wasthevariancein the error of the greenchannek diag-
onal bandat the secondscale).We thenchoosethe next
bestfeaturefrom the remaining215 componentsThis

processwas repeateduntil all featureswere selected.

The solid line in Figure 8 is the accurag asa function
of the numberof features.The white and gray regions
correspondo errorandcoefcient featuresrespectiely.
That s, if the featureincludedon theith iterationis a
coefcient thenwe denotethat with a vertical gray line
atthe i position on the horizontalaxis. Note that the
coefcient and error statisticsare interleaved, shaving
thatboth setsof statisticsareimportantfor classi cation.

And nally, we attemptedto retrain the non-linear
SVM with randomclasslabelsassignedo the training
images. The rationalefor this was to ensurethat the
statisticalmodelandclassi er arediscriminatingon fun-
damentalifferencedetweerphotographiandphotore-
alistic images,and not on someatrtifact. To this end,we
expectarandomclassassignmento leadto signi cantly
worseclassi cationaccurag. We generateden different
training sets containing 5; 000 randomly selectedpho-
tographicimagesand5; 000 photorealistidmages.One-
half of theseimageswererandomlyassignedo the pho-
tographicclassand the other half were assignedo the
photorealisticclass. We then trained non-linear SVM
classi ers on thesetraining setsand testedthem on the
testingsetsas usedin our experimentdescribedabove.
The best performanceacrossthe ten training setswas
27:6% correctly classi ed photographicimages,with a
1:4% false-ngative rate. Note that this is signi cantly
worsethanthe 66:8% detectionaccurag whenthe cor
rect training labelswere used.This resultindicatesthat
our statisticalmodelandclassi er are discriminatingon
fundamentaktatisticaldifferencedetweernphotographic
and photorealistidmages.

V. DISCUSSION

We have describedh statisticalmodelfor photographic
imagesconsistingof rst- andhigherorderwaveletstatis-

5This analysis was performed only on the LDA becausethe
computationakostof retraining23;220= 216+ + 1 non-linear
SVMs is prohibitive. We expect the samepatternof resultsfor the
non-linearSVM.

tics. This modelseemgo captureregularitiesthatarein-

herentto photographidmages.We have alsoshown that
this model, coupledwith eitheran LDA or a non-linear
SVM, canbe usedto differentiatebetweerphotorealistic
and photographicimages.It is interestingto see that
even though photorealisticimagescan be perceptually
indistinguishabldrom photographidmagestheir under

lying statisticscan still be signi cantly different. These
techniquesarealsolikely to have importantapplications
in the growing eld of digital forensics.

There are, of course,sereral possibleextensionsto
this work. We expect that thesetechniquescan be ex-
tendedto differentiatebetweensynthetically generated
and naturalvoice signalsandvideo streamsAnd, asin
earlierwork [8] we expecta one-classSVM, that only
requirestraining from photographidmages,to simplify
the classi er training.

Finally we note that it is not immediately obvious
thata photorealistidmagecould be alteredto matchthe
expectedhigherorder statisticsof photographidmages.
The dravback of this, from a renderingpoint of view,
is that thesemodelsdon't necessarilygive ary insight
into how one might rendermore photorealisticimages.
The benet, from a digital forensic point of view, is
thatit is likely that this model will not be immediately
vulnerableto counterattacks.It is possible,of course,
thatcountermeasuresvill be developedthat canfoil the
classi cation schemeoutlined here.The developmentof
suchtechniqueswill in turn leadto betterclassi cation
schemesand so on.
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Fig. 2: Eight examplesfrom a databaseof 40; 000 photographidmages.The central256 256 white boxes denote
the region of the imagefrom which statisticsare measured.

Fig. 3: Eight examplesfrom a databas®f 6; 000 photorealistidmages.The central256 256 white boxesdenotethe
region of the imagefrom which statisticsare measured.

Fig. 4: Easily classi ed photographidmages.



Fig. 5: Easily classi ed photorealisticimages.

Fig. 6: Incorrectly classi ed photographiamages.

Fig. 7: Incorrectly classi ed photorealistidmages.
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Fig. 8: Shavn is the classi cationaccurag asa function of the numberandcategory of featurefor the LDA classi er.
The white and gray regions correspondo error and coefcient featuresrespectiely.

(a)

(b)

() (d)

Fig. 9: Imagesfrom www.fakeorfoto.com . Shawvn in (a) and (c) are correctly and incorrectly classi ed

photographidmages,respectiely. Showvn in (b) and (d) are correctly andincorrectly classi ed photorealistidmages,
respectrely.



